It may interest you
-
Research led by the Instituto de Astrofísica de Canarias (IAC) has used an innovative technique based on artificial intelligence to study how stars form in galaxies. By analysing 10 000 nearby galaxies, the team have discovered that most stars are born within their own galaxy. Galactic mergers, while important, are not the main source of new stars. Furthermore, the study reveals that more massive galaxies are more affected by these mergers. These results, published in Nature Astronomy, provide new clues about the complex history of galaxies and their evolution over time. Most galaxies do notAdvertised on
-
A study conducted with the new WEAVE , installed on the Telescopio William Herschel (WHT) at the Observatorio del Roque de los Muchachos (La Palma), and in whose construction the Instituto de Astrofísica de Canarias (IAC) participated, has revealed clear signs of shock interaction in the Type II supernova SN 2023ixf. Almost a year after the explosion, the data obtained with WEAVE reveal complex emission features that provide new clues about the processes shaping the final stages of massive star evolution. SN 2023ixf, located in the nearby galaxy M101, is the closest Type II supernovaAdvertised on
-
The single star nearest to the Sun is called Barnard’s star. A team of researchers led by the Instituto de Astrofísica de Canarias (IAC), has recently detected a ‘sub-Earth’ orbiting it. This exoplanet, called Barnard b has at least half the mass of Venus and orbits rapidly around its star, so that its year lasts only a little over three Earth days. This new exoplanet is sixteen times nearer to Barnard’d star than Mercury is to the Sun, and has a surface temperature close to 125oC, so it does not have liquid water on its surface. This discovery, led by the IAC in collaboration with a numberAdvertised on