Bibcode
                                    
                            Grant, David; Lothringer, Joshua D.; Wakeford, Hannah R.; Alam, Munazza K.; Alderson, Lili; Bean, Jacob L.; Benneke, Björn; Désert, Jean-Michel; Daylan, Tansu; Flagg, Laura; Hu, Renyu; Inglis, Julie; Kirk, James; Kreidberg, Laura; López-Morales, Mercedes; Mancini, Luigi; Mikal-Evans, Thomas; Molaverdikhani, Karan; Palle, Enric; Rackham, Benjamin V.; Redfield, Seth; Stevenson, Kevin B.; Valenti, Jeff A.; Wallack, Nicole L.; Aggarwal, Keshav; Ahrer, Eva-Maria; Crossfield, Ian J. M.; Crouzet, Nicolas; Iro, Nicolas; Nikolov, Nikolay K.; Wheatley, Peter J.; JWST Transiting Exoplanet Community ERS Team
    Bibliographical reference
                                    The Astrophysical Journal
Advertised on:
    
                        5
            
                        2023
            
  Journal
                                    
                            Citations
                                    19
                            Refereed citations
                                    15
                            Description
                                    Carbon monoxide (CO) is predicted to be the dominant carbon-bearing molecule in giant planet atmospheres and, along with water, is important for discerning the oxygen and therefore carbon-to-oxygen ratio of these planets. The fundamental absorption mode of CO has a broad, double-branched structure composed of many individual absorption lines from 4.3 to 5.1 μm, which can now be spectroscopically measured with JWST. Here we present a technique for detecting the rotational sub-band structure of CO at medium resolution with the NIRSpec G395H instrument. We use a single transit observation of the hot Jupiter WASP-39b from the JWST Transiting Exoplanet Community Early Release Science (JTEC ERS) program at the native resolution of the instrument (R ~ 2700) to resolve the CO absorption structure. We robustly detect absorption by CO, with an increase in transit depth of 264 ± 68 ppm, in agreement with the predicted CO contribution from the best-fit model at low resolution. This detection confirms our theoretical expectations that CO is the dominant carbon-bearing molecule in WASP-39b's atmosphere and further supports the conclusions of low C/O and supersolar metallicities presented in the JTEC ERS papers for WASP-39b.
                            Related projects
                 
Exoplanets and Astrobiology
            
    The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
            
            Enric
            
                        Pallé Bago