Bibcode
                                    
                            Steiner, O.; Franz, M.; Bello González, N.; Nutto, Ch.; Rezaei, R.; Martínez-Pillet, V.; Bonet, J. A.; del Toro Iniesta, J. C.; Domingo, V.; Solanki, S. K.; Knölker, M.; Schmidt, W.; Barthol, P.; Gandorfer, A.
    Bibliographical reference
                                    The Astrophysical Journal Letters, Volume 723, Issue 2, pp. L180-L184 (2010).
Advertised on:
    
                        11
            
                        2010
            
  Citations
                                    82
                            Refereed citations
                                    66
                            Description
                                    We have investigated a time series of continuum intensity maps and
corresponding Dopplergrams of granulation in a very quiet solar region
at the disk center, recorded with the Imaging Magnetograph eXperiment
(IMaX) on board the balloon-borne solar observatory SUNRISE. We find
that granules frequently show substructure in the form of lanes composed
of a leading bright rim and a trailing dark edge, which move together
from the boundary of a granule into the granule itself. We find
strikingly similar events in synthesized intensity maps from an ab
initio numerical simulation of solar surface convection. From cross
sections through the computational domain of the simulation, we conclude
that these granular lanes are the visible signature of (horizontally
oriented) vortex tubes. The characteristic optical appearance of vortex
tubes at the solar surface is explained. We propose that the observed
vortex tubes may represent only the large-scale end of a hierarchy of
vortex tubes existing near the solar surface.
                            Related projects
                 
Solar and Stellar Magnetism
            
    Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
            
            Tobías
            
                        Felipe García