Bibcode
                                    
                            Margalef-Bentabol, Berta; Huertas-Company, Marc; Charnock, Tom; Margalef-Bentabol, Carla; Bernardi, Mariangela; Dubois, Yohan; Storey-Fisher, Kate; Zanisi, Lorenzo
    Bibliographical reference
                                    Monthly Notices of the Royal Astronomical Society
Advertised on:
    
                        6
            
                        2020
            
  Citations
                                    46
                            Refereed citations
                                    38
                            Description
                                    With the advent of future big-data surveys, automated tools for unsupervised discovery are becoming ever more necessary. In this work, we explore the ability of deep generative networks for detecting outliers in astronomical imaging data sets. The main advantage of such generative models is that they are able to learn complex representations directly from the pixel space. Therefore, these methods enable us to look for subtle morphological deviations which are typically missed by more traditional moment-based approaches. We use a generative model to learn a representation of expected data defined by the training set and then look for deviations from the learned representation by looking for the best reconstruction of a given object. In this first proof-of-concept work, we apply our method to two different test cases. We first show that from a set of simulated galaxies, we are able to detect ${\sim}90{{\ \rm per\ cent}}$ of merging galaxies if we train our network only with a sample of isolated ones. We then explore how the presented approach can be used to compare observations and hydrodynamic simulations by identifying observed galaxies not well represented in the models. The code used in this is available at https://github.com/carlamb/astronomical-outliers-WGAN.
                            Related projects
                 
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
            
    We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
            
            Anna
            
                        Ferré Mateu