Bibcode
                                    
                            Sarmiento, Regina; Huertas-Company, Marc; Knapen, Johan H.; Sánchez, Sebastián F.; Domínguez Sánchez, Helena; Drory, Niv; Falcón-Barroso, Jesus
    Referencia bibliográfica
                                    The Astrophysical Journal
Fecha de publicación:
    
                        11
            
                        2021
            
  Revista
                                    
                            Número de citas
                                    27
                            Número de citas referidas
                                    22
                            Descripción
                                    As available data sets grow in size and complexity, advanced visualization tools enabling their exploration and analysis become more important. In modern astronomy, integral field spectroscopic galaxy surveys are a clear example of increasing high dimensionality and complex data sets, which challenges the traditional methods used to extract the physical information they contain. We present the use of a novel self-supervised machine-learning method to visualize the multidimensional information on stellar population and kinematics in the MaNGA survey in a 2D plane. Our framework is insensitive to nonphysical properties such as the size of the integral field unit and is therefore able to order galaxies according to their resolved physical properties. Using the extracted representations, we study how galaxies distribute based on their resolved and global physical properties. We show that even when exclusively using information about the internal structure, galaxies naturally cluster into two well-known categories, rotating main-sequence disks and massive slow rotators, from a purely data-driven perspective, hence confirming distinct assembly channels. Low-mass rotation-dominated quenched galaxies appear as a third cluster only if information about the integrated physical properties is preserved, suggesting a mixture of assembly processes for these galaxies without any particular signature in their internal kinematics that distinguishes them from the two main groups. The framework for data exploration is publicly released with this publication, ready to be used with the MaNGA or other integral field data sets.
                            Proyectos relacionados
                 
Huellas de la Formación de las Galaxias: Poblaciones estelares, Dinámica y Morfología 
            
    Bienvenida a la página web del g rupo de investigación Traces of Galaxy Formation. Somos un grupo de investigación amplio, diverso y muy activo cuyo objetivo principal es entender la formación de galaxias en el Universo de una manera lo más completa posible. Con el estudio detellado de las poblaciones estelares como bandera, estamos constantemente
            
            Anna
            
                        Ferré Mateu
            
   
Las Galaxias Espirales: Evolución y Consecuencias
            
    Nuestro grupo pequeño esta bien conocido y respetado internacionalmente por nuestro trabajo inovativo e importante en varios aspectos de la estructura y la evolución de las galaxias espirales cercanas. Usamos principalmente observaciones en varias longitudes de onda, explotando las sinergías que nos permiten responder a las cuestiones más
            
            Johan Hendrik
            
                        Knapen Koelstra