Bibcode
                                    
                            Khomenko, E.; Collados, M.; Shchukina, N.; Díaz, A.
    Referencia bibliográfica
                                    Astronomy and Astrophysics, Volume 584, id.A66, 9 pp.
Fecha de publicación:
    
                        12
            
                        2015
            
  Revista
                                    
                            Número de citas
                                    12
                            Número de citas referidas
                                    10
                            Descripción
                                    The amplitudes of the Evershed flow are measured using pairs of
carefully selected Fe i and Fe ii spectral lines that are close in
wavelength and registered simultaneously. A sunspot belonging to the
NOAA 11582 group was scanned using the spectrograph of the German Vacuum
Tower Telescope (Observatorio del Teide, Tenerife). Velocities were
extracted from intensity profiles using the λ-meter technique.
The formation heights of the observed spectral lines were calculated
using semi-empirical models of a bright and dark penumbral filament
taking into account the sunspot location at the limb. Our objective is
to compare azimuthally averaged amplitudes of the Evershed flow
extracted from neutral and ion lines. We find measurable differences in
the radial component of the flow. All five pairs of lines show the same
tendency; the flow measured from the Fe i lines has an amplitude that is
a few hundred ms-1 larger than that of the Fe ii lines. This
tendency is preserved at all photospheric heights and radial distances
in the penumbra. We discuss the possible origin of this effect.
                            Proyectos relacionados
                 
Magnestismo Solar y Estelar
            
    Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
            
            Tobías
            
                        Felipe García