Bibcode
                                    
                            Simonneau, E.; Cardona, O.; Crivellari, L.
    Referencia bibliográfica
                                    Astrophysics, Volume 55, Issue 1, pp.110-126
Fecha de publicación:
    
                        3
            
                        2012
            
  Revista
                                    
                            Número de citas
                                    2
                            Número de citas referidas
                                    2
                            Descripción
                                    Radiative transfer (RT) problems in which the source function includes a
scattering-like integral are typical two-points boundary problems. Their
solution via differential equations implies making hypotheses on the
solution itself, namely the specific intensity I (τ; n) of the
radiation field. On the contrary, integral methods require making
hypotheses on the source function S(τ). It seems of course more
reasonable to make hypotheses on the latter because one can expect that
the run of S(τ) with depth is smoother than that of I (τ; n). In
previous works we assumed a piecewise parabolic approximation for the
source function, which warrants the continuity of S(τ) and its first
derivative at each depth point. Here we impose the continuity of the
second derivative S''(τ). In other words, we adopt a cubic spline
representation to the source function, which highly stabilizes the
numerical processes.
                            Proyectos relacionados
                 
Propiedades Físicas y Evolución de Estrellas Masivas
            
    Las estrellas masivas son objetos claves para la Astrofísica. Estas estrellas nacen con más de 8 masas solares, lo que las condena a morir como Supernovas. Durante su rápida evolución liberan, a través de fuertes vientos estelares, gran cantidad de material procesado en su núcleo y, en determinadas fases evolutivas, emiten gran cantidad de
            
            Sergio
            
                        Simón Díaz