Bibcode
                                    
                            Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; Dermer, C. D.; de Palma, F.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guillemot, L.; Guiriec, S.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W. et al.
    Referencia bibliográfica
                                    The Astrophysical Journal, Volume 727, Issue 2, article id. 129 (2011).
Fecha de publicación:
    
                        2
            
                        2011
            
  Revista
                                    
                            Número de citas
                                    227
                            Número de citas referidas
                                    170
                            Descripción
                                    We report on the γ-ray activity of the blazar Mrk 501 during the
first 480 days of Fermi operation. We find that the average Large Area
Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by
a single power-law function with a photon index of 1.78 ± 0.03.
While we observe relatively mild flux variations with the Fermi-LAT
(within less than a factor of two), we detect remarkable spectral
variability where the hardest observed spectral index within the LAT
energy range is 1.52 ± 0.14, and the softest one is 2.51 ±
0.20. These unexpected spectral changes do not correlate with the
measured flux variations above 0.3 GeV. In this paper, we also present
the first results from the 4.5 month long multifrequency campaign (2009
March 15—August 1) on Mrk 501, which included the Very Long
Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA,
GASP-WEBT, and other collaborations and instruments which provided
excellent temporal and energy coverage of the source throughout the
entire campaign. The extensive radio to TeV data set from this campaign
provides us with the most detailed spectral energy distribution yet
collected for this source during its relatively low activity. The
average spectral energy distribution of Mrk 501 is well described by the
standard one-zone synchrotron self-Compton (SSC) model. In the framework
of this model, we find that the dominant emission region is
characterized by a size lsim0.1 pc (comparable within a factor of few to
the size of the partially resolved VLBA core at 15-43 GHz), and that the
total jet power (sime1044 erg s-1) constitutes
only a small fraction (~10-3) of the Eddington luminosity.
The energy distribution of the freshly accelerated radiating electrons
required to fit the time-averaged data has a broken power-law form in
the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below
and above the break energy of 20 GeV. We argue that such a form is
consistent with a scenario in which the bulk of the energy dissipation
within the dominant emission zone of Mrk 501 is due to relativistic,
proton-mediated shocks. We find that the ultrarelativistic electrons and
mildly relativistic protons within the blazar zone, if comparable in
number, are in approximate energy equipartition, with their energy
dominating the jet magnetic field energy by about two orders of
magnitude.