Bibcode
                                    
                            Sinigaglia, Francesco; Kitaura, Francisco-Shu; Balaguera-Antolínez, Andrés; Shimizu, Ikkoh; Nagamine, Kentaro; Sánchez-Benavente, Manuel; Ata, Metin
    Referencia bibliográfica
                                    The Astrophysical Journal
Fecha de publicación:
    
                        3
            
                        2022
            
  Revista
                                    
                            Número de citas
                                    16
                            Número de citas referidas
                                    12
                            Descripción
                                    This work presents a new physically motivated supervised machine-learning method, HYDRO-BAM, to reproduce the three-dimensional Lyα forest field in real and redshift space, which learns from a reference hydrodynamic simulation and thereby saves about seven orders of magnitude in computing time. We show that our method is accurate up to k ~ 1 h Mpc-1 in the one- (probability distribution function), two- (power spectra), and three-point (bispectra) statistics of the reconstructed fields. When compared to the reference simulation including redshift-space distortions, our method achieves deviations of ≲2% up to k = 0.6 h Mpc-1 in the monopole and ≲5% up to k = 0.9 h Mpc-1 in the quadrupole. The bispectrum is well reproduced for triangle configurations with sides up to k = 0.8 h Mpc-1. In contrast, the commonly adopted Fluctuating Gunn-Peterson approximation shows significant deviations, already when peculiar motions are not included (real space) at configurations with sides of k = 0.2-0.4 h Mpc-1 in the bispectrum and is also significantly less accurate in the power spectrum (within 5% up to k = 0.7 h Mpc-1). We conclude that an accurate analysis of the Lyα forest requires considering the complex baryonic thermodynamical large-scale structure relations. Our hierarchical domain-specific machine-learning method can efficiently exploit this and is ready to generate accurate Lyα forest mock catalogs covering the large volumes required by surveys such as DESI and WEAVE. * Released on 2022 January 20.
                            Proyectos relacionados
                 
Cosmología con Trazadores de la Estructura a Gran Escala del Universo 
            
    El Fondo Cósmico de Microondas (FCM) contiene la información estadística de las semillas primigenias que han dado lugar a la formación de todas las estructuras en el Universo. Su contrapartida natural en el Universo local es la distribución de las galaxias que surgen como resultado del crecimiento gravitatorio de aquellas fluctuaciones de densidad
            
            FRANCISCO SHU
            
                        KITAURA JOYANES