Bibcode
                                    
                            Terradas, J.; Soler, R.; Luna, M.; Oliver, R.; Ballester, J. L.
    Referencia bibliográfica
                                    The Astrophysical Journal, Volume 799, Issue 1, article id. 94, 15 pp. (2015).
Fecha de publicación:
    
                        1
            
                        2015
            
  Revista
                                    
                            Número de citas
                                    52
                            Número de citas referidas
                                    52
                            Descripción
                                    In this paper we present a numerical study of the time evolution of
solar prominences embedded in sheared magnetic arcades. The prominence
is represented by a density enhancement in a background-stratified
atmosphere and is connected to the photosphere through the magnetic
field. By solving the ideal magnetohydrodynamic equations in three
dimensions, we study the dynamics for a range of parameters
representative of real prominences. Depending on the parameters
considered, we find prominences that are suspended above the
photosphere, i.e., detached prominences, but also configurations
resembling curtain or hedgerow prominences whose material continuously
connects to the photosphere. The plasma-β is an important parameter
that determines the shape of the structure. In many cases magnetic
Rayleigh-Taylor instabilities and oscillatory phenomena develop. Fingers
and plumes are generated, affecting the whole prominence body and
producing vertical structures in an essentially horizontal magnetic
field. However, magnetic shear is able to reduce or even to suppress
this instability.
                            Proyectos relacionados
                 
Magnestismo Solar y Estelar
            
    Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
            
            Tobías
            
                        Felipe García