Bibcode
                                    
                            La Barbera, F.; Vazdekis, A.; Ferreras, I.; Pasquali, A.
    Bibliographical reference
                                    Monthly Notices of the Royal Astronomical Society
Advertised on:
    
                        7
            
                        2021
            
  Citations
                                    10
                            Refereed citations
                                    8
                            Description
                                    Using new, homogeneous, long-slit spectroscopy in the wavelength range from ~0.35 to $\sim 1 \, \mu$m, we study radial gradients of optical and near-infrared (NIR) initial mass function (IMF)-sensitive features along the major axis of the bulge of M31, out to a galactocentric distance of ~200 arcsec (~800 pc). Based on state-of-the-art stellar population synthesis models with varying Na abundance ratio, we fit a number of spectral indices, from different chemical species (including TiO's, Ca, and Na indices), to constrain the low-mass (≲0.5 M⊙) end slope (i.e. the fraction of low-mass stars) of the stellar IMF, as a function of galactocentric distance. Outside a radial distance of ~10 arcsec, we infer an IMF similar to a Milky Way-like distribution, while at small galactocentric distances, an IMF radial gradient is detected, with a mildly bottom-heavy IMF in the few inner arcsec. We are able to fit Na features (both NaD and $\rm Na\,{\small I}8190$), without requiring extremely high Na abundance ratios. $\rm [Na/Fe]$ is ~0.4 dex for most of the bulge, rising up to ~0.6 dex in the innermost radial bins. Our results imply an overall, luminosity-weighted, IMF and mass-to-light ratio for the M31 bulge, consistent with those for a Milky Way-like distribution, in contrast to results obtained, in general, for most massive early-type galaxies.
                            Related projects
                 
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
            
    We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
            
            Anna
            
                        Ferré Mateu