Bibcode
                                    
                            Boucaud, Alexandre; Huertas-Company, Marc; Heneka, Caroline; Ishida, Emille E. O.; Sedaghat, Nima; de Souza, Rafael S.; Moews, Ben; Dole, Hervé; Castellano, Marco; Merlin, Emiliano; Roscani, Valerio; Tramacere, Andrea; Killedar, Madhura; Trindade, Arlindo M. M.; COIN Collaboration
    Bibliographical reference
                                    Monthly Notices of the Royal Astronomical Society
Advertised on:
    
                        1
            
                        2020
            
  Citations
                                    55
                            Refereed citations
                                    50
                            Description
                                    The new generation of deep photometric surveys requires unprecedentedly precise shape and photometry measurements of billions of galaxies to achieve their main science goals. At such depths, one major limiting factor is the blending of galaxies due to line-of-sight projection, with an expected fraction of blended galaxies of up to 50 per cent. This proof-of-concept work explores for the first time the use of deep neural networks to estimate the photometry of blended pairs of galaxies in space-based monochrome images similar to the ones that will be delivered by the Euclidspace telescope under simplified idealized conditions. Using a clean sample of isolated galaxies from the CANDELS survey, we artificially blend them and train two different network models to recover the photometry of the two galaxies. We show that our approach can recover the original photometry of the galaxies before being blended with ̃ 7 per cent mean absolute percentage error on flux estimations without any human intervention and without any assumption on the galaxy shape. This represents an improvement of at least a factor of 4 compared to the classical SEXTRACTOR approach. We also show that, forcing the network to simultaneously estimate fractional segmentation maps results in a slightly improved photometry. All data products and codes have been made public to ease the comparison with other approaches on a common data set. See https://github.com/aboucaud/coindeblend.
                            Related projects
                 
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
            
    We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
            
            Anna
            
                        Ferré Mateu