Bibcode
                                    
                            Eisert, Lukas; Pillepich, Annalisa; Nelson, Dylan; Klessen, Ralf S.; Huertas-Company, Marc; Rodriguez-Gomez, Vicente
    Referencia bibliográfica
                                    Monthly Notices of the Royal Astronomical Society
Fecha de publicación:
    
                        2
            
                        2023
            
  Número de citas
                                    37
                            Número de citas referidas
                                    28
                            Descripción
                                    A fundamental prediction of the ΛCDM cosmology is the hierarchical build-up of structure and therefore the successive merging of galaxies into more massive ones. As one can only observe galaxies at one specific time in the cosmic history, this merger history remains, in principle, unobservable. By using the TNG100 simulation of the IllustrisTNG project, we show that it is possible to infer the unobservable stellar assembly and merger history of central galaxies from their observable properties by using machine learning techniques. In particular, in this first paper of ERGO-ML (Extracting Reality from Galaxy Observables with Machine Learning), we choose a set of seven observable integral properties of galaxies to infer the stellar ex-situ fraction, the average merger lookback times and mass ratios, and the lookback time and stellar mass of the last major merger. To infer the posterior distribution for these parameters and hence estimate the uncertainties in the predictions, we use a conditional Invertible Neural Network (cINN). We find that the stellar ex-situ fraction and the time of the last major merger are well-determined by the selected set of observables, that the mass-weighted merger mass ratio is unconstrained, and that, beyond stellar mass, stellar morphology and stellar age are the most informative properties. Finally, we show that the cINN recovers the remaining unexplained scatter and secondary cross-correlations. Overall, this is a first step towards a tool that can be applied to large galaxy surveys in order to infer unobservable properties of the galaxies' past, enabling empirical studies of galaxy evolution enriched by cosmological simulations.
                            Proyectos relacionados
                 
Huellas de la Formación de las Galaxias: Poblaciones estelares, Dinámica y Morfología 
            
    Bienvenida a la página web del g rupo de investigación Traces of Galaxy Formation. Somos un grupo de investigación amplio, diverso y muy activo cuyo objetivo principal es entender la formación de galaxias en el Universo de una manera lo más completa posible. Con el estudio detellado de las poblaciones estelares como bandera, estamos constantemente
            
            Anna
            
                        Ferré Mateu