Bibcode
                                    
                            Quintero Noda, C.; Uitenbroek, H.; Carlsson, M.; Orozco Suárez, D.; Katsukawa, Y.; Shimizu, T.; Ruiz Cobo, B.; Kubo, M.; Oba, T.; Kawabata, Y.; Hasegawa, T.; Ichimoto, K.; Anan, T.; Suematsu, Y.
    Referencia bibliográfica
                                    Monthly Notices of the Royal Astronomical Society, Volume 481, Issue 4, p.5675-5686
Fecha de publicación:
    
                        12
            
                        2018
            
  Número de citas
                                    14
                            Número de citas referidas
                                    14
                            Descripción
                                    The next generation of solar observatories aim to understand the
magnetism of the solar chromosphere. Therefore, it is crucial to
understand the polarimetric signatures of chromospheric spectral lines.
For this purpose, we here examine the suitability of the three
Fraunhofer Mg I b1, b2, and b4 lines at
5183.6, 5172.7, and 5167.3 Å, respectively. We start by describing
a simplified atomic model of only six levels and three line transitions
for computing the atomic populations of the 3p-4s (multiplet number 2)
levels involved in the Mg I b line transitions assuming non-local
thermodynamic conditions and considering only the Zeeman effect using
the field-free approximation. We test this simplified atom against more
complex ones finding that, although there are differences in the
computed profiles, they are small compared with the advantages provided
by the simple atom in terms of speed and robustness. After comparing the
three Mg I lines, we conclude that the most capable one is the
b2 line as b1 forms at similar heights and always
shows weaker polarization signals, while b4 is severely
blended with photospheric lines. We also compare Mg I b2 with
the K I D1 and Ca II 8542 Å lines finding that the
former is sensitive to the atmospheric parameters at heights that are in
between those covered by the latter two lines. This makes Mg I
b2 an excellent candidate for future multiline observations
that aim to seamlessly infer the thermal and magnetic properties of
different features in the lower solar atmosphere.
                            Proyectos relacionados
                 
Magnestismo Solar y Estelar
            
    Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
            
            Tobías
            
                        Felipe García