Extension of the Virasoro and Neveu-Schwartz algebras and generalized Sturm-Liouville operators
We consider the universal central extension of the Lie algebra $Vect (S^1)${math s}$ C^{infty}(S^1)$. The coadjoint representation of this Lie algebra has a natural geometric interpretation by matrix analogues of the Sturm-Liouville operators. This approach leads to new Lie superalgebras generalizing the well-known Neveu-Schwartz algebra.
Marcel, P. et al.
Fecha de publicación:
2
1996